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Uncertain destination dynamics
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Certain dynamical systems exhibit a sensitivity to initial conditions in which the asymptotic state is selected
from an infinite number of possible states. The phase space of such systems is foliated with ‘‘attractors,’’ each
of which is associated with a particular set of initial conditions. The associated uncertain destination dynamics
can be analyzed by an appropriate reduction of the full system to a subsystem that explicitly yields the
dynamics.@S1063-651X~99!09909-2#

PACS number~s!: 05.45.2a
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Recent studies of high-dimensional dynamical syste
have revealed many new modes of complex evolution, s
as synchronization@1#, on-off intermittency@2#, and fractal,
riddled, and intermingled basins@3#. Many of these studies
have raised fundamental questions concerning the rela
ship between model systems and the real systems the
tempt to describe@4#. In this paper, we report on anothe
gross complexity in the evolution of high-dimensional sy
tems.

For many dynamical systems governed by evolut
equations of the form

ẋi5 f i~x1 ,...,xn!, i 51, . . . ,n ~1!

the long-time evolution can be described by a reduced
tem,

ẋi5gi~x1 ,...,xm ;c1 ,...,ck!, i 51, . . . ,m, k<n2m
~2!

along with a series of~typically! algebraic relations,

05hj ~x1 ,...,xn ;cj !, j 51, . . . ,k ~3!

wherecj are constants. In general, these constants will
pend on the initial conditions of the full system,

cj5cj~x0i !, i 51, . . . ,n. ~4!

We may refer to thedestination dynamicsof system~1! as
being given by the reduced system~2!–~4!. The specific
form for ~2!–~4! may differ for each ‘‘attractor’’ of the origi-
nal system, but, apart from the initial fast transients, the e
lution of the reduced and full systems should be equivale
In experiment, information on the early, fast evolution m
be restricted and the destination dynamics may be all tha
available for study.

The evolution of certain dynamical systems, such as th
with riddled basins of attraction, may exhibit a complex a
uncertain dependence on the initial conditions@5#. In this
paper, we investigate a different scenario, one in which
initial conditions determine which asymptotic state is s
lected from an infinite number of possibilities. We show ho

*To whom correspondence should addressed.
PRE 601063-651X/99/60~4!/3876~5!/$15.00
s
h

n-
at-

-

n

s-

-

-
t.

is

se

e
-

the destination dynamics given by a reduced system can
used to understand this behavior. We begin by considerin
specific example, comprised of a modified form of the L
renz equations. We then propose a mechanical model
possible example of a physical system that would exhibit t
behavior.

We consider two Lorenz systems@6# coupled through the
variables in the following form:

ẋ15s~x22x4!, ~5a!

ẋ25rx12x22x1x3 , ~5b!

ẋ35x1x22bx3 , ~5c!

ẋ45s~x52x4!, ~5d!

ẋ55rx12x52x1x6 , ~5e!

ẋ65x1x52bx6 . ~5f!

The unidirectional coupling of Lorenz systems, with su
system (x1-x3) driving subsystem (x4-x6), has been studied
by Pecora and Carroll@1#, He and Vaidya@7#, and Tresser,
Worfolk, and Bass@8# in the context of synchronizing chaos
Such coupling has also been used in schemes for comm
cations@9#. Here, we have also allowed the variablex4 to
couple the second subsystem back to the first through
~5a!.

Figure 1 shows the behavior of this system for three d
ferent initial conditions, with parameter valuess510, r
5160, andb5 8

3 . In each case, the system evolves to a d
ferent final state, with different periodic solutions in~a! and
~b! and an aperiodic response in~c!. Other initial conditions
produce yet different final states for the same parameter
ues, and the system may also respond to perturbation w
qualitative change in behavior. This gross sensitivity to i
tial conditions appears to be different from that found
previous studies, where a system exhibits extreme sensit
in choosing between a small number of attractors for a gi
set of parameter values@3#.

Figure 2~a! shows the largest Lyapunov exponent of t
state resulting from initial conditions corresponding to t
indicated values ofx05 and x06. The initial values of the
other variables, as well as the parameterss, r, andb, were
held constant, and the system was allowed to evolve to
3876 © 1999 The American Physical Society
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asymptotic state for differentx05 andx06 values. The larges
Lyapunov exponent of the corresponding state was then
termined and its value was plotted as a function ofx05 and
x06 according to the indicated color coding. All period
states appear as blue, the color assigned to values equal
less than zero, and chaotic states can be seen as the c
corresponding to positive values. Figure 2~b! shows the
maximum amplitude of oscillationx6

max as a function of the
initial value x05 for the same initial values of the other var
ables. The plot corresponds to a one-dimensional~1D! cut at
x0650 of the 2D plot in Fig. 2~a!, with the color coding
again giving the value of the largest Lyapunov exponent

The dependence on initial conditions shown in Fig. 2 s
gests that the six-dimensional phase space is foliated wit
infinite number of ‘‘attractors.’’ To understand this behavio
we consider a reduced system derived from the full system
determine the destination dynamics. Following the meth
of He and Vaidya@7#, we construct the governing equation
for the ‘‘errors’’ e15x12x4 , e25x22x5 , and e35x3
2x6 , giving

ė15se2 , ~6a!

ė252e22x1e3 , ~6b!

ė35x1e22be3 . ~6c!

It follows that the functionV5e2
21e3

2 is a Lyapunov func-
tion for this system of equations@10#. Thuse2 ande3 must
tend to zero, with the pairs of variables (x2 ,x5) and (x3 ,x6)
becoming absolutely synchronized, independent of the in
conditions. Withe2→0, then from Eq.~6a! we also have
e15(x12x4)→c, wherec is some constant dependent o
the initial conditions of the full system. The system th
establishes a constant difference between the remaining
of variables (x1 ,x4). Each new set of initial conditions give
rise to a different value ofc for this difference.

The destination dynamics of Eq.~5! can thus be written as

FIG. 1. Time evolution of Eqs.~5! for identical parameter val-
ues (s510, r 5160, andb5

8
3 ) but for different initial conditions:

~a! period 2, (x05, x06)5(2.0, 0.0), ~b! period 8, (x05, x06)
5(21.1, 1.0), ~b! chaos, (x05, x06)5(0.0,21.0). Other initial
conditions: (x01, x02, x03, x04)5(0.1, 0.02, 0.02, 1.0).
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ẋ15s~x22x11c!, ~7a!

ẋ25rx12x22x1x3 , ~7b!

ẋ35x1x22bx3 , ~7c!

with the constraints

x22x55x32x650, x12x45c. ~7d!

Compared with the traditional Lorenz system, there is n
an additional ‘‘parameter,’’ namely, the differencec in Eq.
~7a!. We can examine the behavior of this system as a fu
tion of c, and the corresponding bifurcation sequence is
lustrated in Fig. 3. This sequence is symmetric aboutc50,
as Eqs. ~7! are invariant under the transformatio
(x1 ,x2 ,c)→(2x1 ,2x2 ,2c). For c50, the system exhibits
a stable period-2 state, but asucu increases there are variou
period-doubling and reverse period-doubling cascades w
regions of chaos and periodic windows. For the full s
variable system, the value ofc corresponding to a given se
of initial conditions can be obtained as the long-time limit
the errore1 . For any such value, the destination dynamics
the corresponding three-variable system can also be c
puted. We find complete correlation between these two
proaches, with only a phase shift remaining at long times

The change in behavior of the full system with the initi
conditions can now be understood in terms of the role pla
by c. The system is comprised of effectively thre
dimensional dynamics on invariant manifolds embedded
four-dimensional space, which is spanned by the ‘‘para
eter’’ c. For a particular value ofc, the evolution on the
manifold is governed by the ‘‘attractor’’ associated with th
value ofc. This can be clearly seen by comparing the qua
tative features of the bifurcation sequence in Fig. 3 with
initial conditions sequence in Fig. 2~b!. Although these se-
quences do not match quantitatively, since the plot in F
2~b! is a projection of behavior along the ‘‘c direction,’’ the
qualitative correspondence is striking. Perturbing or cha
ing the initial conditions of the six-variable system corr
sponds to shifting the dynamics along the transversec direc-
tion and hence along the relatively dense bifurcat
sequence.

The behavior described above is not unique to the part
lar model given by Eqs.~5!. We can readily construct othe
systems of equations exhibiting uncertain destination dyn
ics by expanding an appropriate set of reduced equati
For example, as a variation on the Lorenz model, start
with the normal three-variable form@Eqs. ~7! without the
parameterc#, we may replace the termx1x3 with a new vari-
ablex4 , which we require to satisfy the conditionx45x1x3
1c, wherec is again some constant. For the latter, we
quired(x42x1x3)/dt50. The resulting four-variable system
also exhibits uncertain destination dynamics.

Finally, we present a mechanical system, adapted fr
that advanced by Sommerer and Ott@5# to illustrate riddled
basins of attraction. We consider a unit-mass particle mov
in 3D space according to

d2

dt2
rW52g

d

dt
rW1FW 1pW sinvt, ~8a!



in Fig. 1.
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FIG. 2. ~Color! ~a! Values of the largest Lyapunov exponent corresponding to the state resulting from different initial valuesx05 andx06.
See side bar for color coding of exponent values.~b! Values of the amplitude ofx6 as a function of the initial valuex05 for the initial value
x0650. Color coding indicates value of the largest Lyapunov exponent. Parameter values and initial values of other variables as
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PRE 60 3879UNCERTAIN DESTINATION DYNAMICS
with ]FW /]t50, whererW5(x,y,z) and

FW 52~“V1“3AW ! ~8b!

consists of a scalar potential fieldV and a vortex fieldAW .
Taking, as an example,

V5~12x2!2, AW 5 x̂x2z21 ŷxy2z1 ẑxz3,

and with pW 5p0x̂, ~9!

then

FW 5@4x~12x2!1xy2# x̂1~z322x2z!ŷ1~2y2z!ẑ. ~10!

This then gives the equations

d2x

dt2
52g

dx

dt
14x~12x2!1xy21p0 sinvt, ~11a!

d2y

dt2
52g

dy

dt
1~z222x2!z, ~11b!

d2z

dt2
52g

dz

dt
2y2z. ~11c!

This set of equations can be reduced by noting thatz50 is a
stable manifold, and withz→0 we see from Eq.~11b! that
dy/dt→0 and thereforey→c, wherec is a constant. This
leads to the reduced system

FIG. 3. Bifurcation sequence of destination dynamics given
Eqs.~7! as a function of parameterc. Other parameter values as
Fig. 1.
ar
d2x

dt2
52g

dx

dt
14x~12x2!1xc21p0 sinvt, ~12!

which is of the form of a forced Duffing equation. This
known to have a dense bifurcation structure for suitable
rameter combinations@11#, and, as this occurs here with
‘‘parameter’’ c dependent on the initial conditions for th
full system, it will show uncertain destination dynamics in
way similar to the coupled Lorenz system, Eqs.~5!. Figure 4
shows three examples of the behavior for different init
conditions but with identical parameter values. Again, t
result is not specific to the choice of fields, such as Eq.~9!
taken here, so we expect the behavior to be generic to a w
class of systems.

In summary, we note that in each example of uncert
destination dynamics, a ‘‘parameter’’c can be identified that
attains a particular value following the decay of transie
behavior. Different initial conditions or a suitable perturb
tion give rise to new dynamical behavior corresponding t
different value ofc. While the behavior is fully dissipative in
the manifold corresponding to a particular value ofc, the
system has neutral stability to influences that move it tra
verse to the manifold to a new value ofc. It is this neutral
stability in the ‘‘c direction’’ that gives rise to the foliation o
‘‘attractors’’ in phase space and the corresponding dep
dence on initial conditions.

We thank the National Science Foundation~CHE-
9974336! and the U.S. Office of Naval Research for suppo
ing this research.

y FIG. 4. Time evolution of Eqs.~11! for identical parameter val-
ues (g50.05,p052.3,v53.5) but with different initial conditions:
(x0 , vx0 , y0 , vy0 , z0 , vz0 , t) 5 (0.56, 0.0, 0.06, 0.4, 0.3, 0.01, 0.0)
~0.56, 0.0,20.26, 0.0, 0.003, 0.0, 0.0!, ~0.56, 0.0, 0.05, 0.0, 0.03
0.0, 0.0! in ~a!, ~b!, and~c!.
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